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A new procedure for obtaining high order normal forms and the associated coe$cients is
presented. It is assumed that the Jacobian of the system considered is in a diagonal form. In
comparison with existing normal form approaches, this procedure lends itself more readily
to symbolic calculations, like MAPLE, and the calculations of high order normal forms,
together with the associated coe$cients, are carried out much more conveniently. To
illustrate the approach, "ve examples are presented. Examples 1 and 3 also contain
a comparison of the results obtained by the methods of normal forms and averaging.
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1. INTRODUCTION

If the Jacobian matrix of a non-linear di!erential equation is in a diagonal form, normal
forms are composed of resonant monomials [1}3] which are relatively easy to determine.
But obtaining the coe$cients associated with each term of a normal form may be quite
cumbersome and may pose especially serious di$culties. In spite of the e!orts, the
conventional normal form methods are not very convenient to apply, requiring a great deal
of labor, especially for the calculation of the coe$cients of high order normal forms.
A modi"ed normal form approach has been presented in references [4}6] which facilitates
the calculation of normal forms and the associated coe$cients. The advantages of this
approach have been described and demonstrated in reference [4]. However, if high order
normal forms are required, the approach introduced in reference [4] is not very convenient
to apply, even though it represents a major improvement compared to the conventional
normal form theory. Some e!ort has been made to calculate the associated coe$cients of
&&normal forms''*or certain simpli"ed forms*by other methods, like the method of
averaging [7, 8] or multiple scale method [8, 9]. Normal form methods determine normal
forms by assuming that the transformed equation contains only resonant polynomial
[10}18]. Di!erent procedures of analysis may lead to identical results in low order cases,
but a general proof that both the normal form approaches and the methods of averaging
lead to identical results in all cases is not easy to establish. Indeed, it is demonstrated that
these methods may lead to apparently di!erent results in high order cases, (see examples
1 and 3 in this paper). However, both methods may be considered essentially equivalent to
22-460X/00/180525#16 $35.00/0 ( 2000 Academic Press
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each other in the sense that the results which appear to be di!erent are, in fact, linked
together through a near identity transformation under some conditions. A detailed
discussion of the relationship concerning these methods is presented in reference [10].

In this paper, the modi"ed normal form approach presented in reference [4] is further
extended and a new procedure is introduced which lends itself readily to symbolic
calculations, like MAPLE. A general MAPLE program is also presented in Appendix A.
This program is for determining high order normal forms and the associated coe$cients, and
is based on the procedure introduced in this paper. Five examples are presented. It is noted
that by the procedure presented here, high order normal forms (including the associated
coe$cients) are obtained in a very short time. Another MAPLE program is also presented
in Appendix B, which is used to verify and con"rm the results obtained by the procedure
presented in this paper.

2. THE MODIFIED NORMAL FORM APPROACH AND PROCEDURE

Consider the non-linear system described by

xR "Ax#
k
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for j"1,2, n. Also, Fm3Hm
n
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n
is a vector space of homogeneous polynomials of

order m in n variables with values in Cn.
Introducing a sequence of near identity transformations
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where Ps(y
s
)3Hs

n
(y

s
) are unde"ned polynomials to be determined such that the terms of

order s in the transformed form will be simpli"ed as resonant polynomials of order s.
Consider equation (3); introducing transformation
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m
) (4)
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into the (m!1)th order transformed equation
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where
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Consider the mth order transformed equation given by
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m
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Here, functions Fn
m~1

are transformed polynomials, which can be calculated from equation
(6), and the results for n)5 are given as follows:
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The transformed polynomials Fn
m~1

(y
m
) can be obtained by symbolic calculations readily,

using for example, MAPLE.
Let the kth equation in equation (3) be written as

yR "Ay#
k
+
n/2

Fn
n~1

(y). (8)

Suppose that Fs
x~1

(y)"Gs
NF

(y) (s"2, 3,2 , k) in equation (8), where Gs
NF

(y) are the
resonant polynomials of order s. Solving P2(y) from F2

1
(y,P2)"G2

NF
(y), and substituting

P2(y) into F3
1
(y, P2) de"ne F3

1
and F3

1
(y). Then, solving P3(y) from F3

2
(y, P3)"G3

NF
(y), the

coe$cients in G3
NF

(y) can be determined. This procedure is not very convenient and one
needs to solve a series of algebraic equations. It becomes increasingly more di$cult as the
order of the normal form increases [3, 4].

Next, introduce the transformation

y"eAtz (9)
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into equations (8) to obtain

zR"e~At
k
+

m/2

Fm
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where eAtz"(ej1tz
1

ej2tz
2
,2, ejntz

n
)T.

It was proved in reference [4] that if Fs
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where M
t
M f (z, t)N denotes explicit time averaging of function f (z, t).

Thus, equation (10) can be expressed as
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It is noted that zR is not assumed to be the average value of zR over ¹*like an averaging
method does*but rather, this is a result of the formulation and transformations introduced
such that zR"f (z, t) becomes zR"f (z). The approach itself is basically not an averaging
procedure; rather it uses the underlying ideas of normal form theory.

Carrying out the transformation z"e~Atx into equation (12), one has

xR "Ax#
k
+

m/2

Gm
NT

(x). (13)

This is a normal form of equation (1).
It is evident that the results of this approach are identical to those of the conventional

normal form theory. Consider the following relations:
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Equations (14) and (15) lead to
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It is observed from the above analysis that the kth order normal form (with the associated
coe$cients) can be obtained directly from the (k!2)th transformed functions.
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It was proved in reference [4] that
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Thus, normal forms of order s are obtained as follows:
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Equation (16) leads to
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Solving the above equation for Ps(z), Ps (z) can be obtained readily as follows:
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where for convenience, cs~2
s1s22sn(k)

, k"1,2, n, are usually chosen as zero.
Normal forms and the transformation functions can be determined from equations (16),

(18) and (20). It is clear that one does not need to solve any di!erential or algebraic
equations. Algebraic calculations are su$cient and only simple co-ordinate transformations
are involved in the above procedure. It presents a major improvement compared to the
conventional normal form theory. The examples presented in reference [4] have clearly
demonstrated that the above normal form approach provides a number of signi"cant
advantages over the existing normal from theory which involves inverting a set of complex
matrices (see equation (6)). This may take a long time and occupy a lot of memory in
MAPLE calculations, especially in the calculations of high order normal forms, and it
becomes increasingly more inconvenient as the order of the normal form increases. In
reference [4], the explicit expressions of the transformation functions Fn

m
are considered (in

MAPLE calculations) which does not require the calculation of the inverses of a set of
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matrices. However, the calculations are not based on an iterative procedure. Therefore if
high order normal forms are required, the approach introduced in reference [4] is not very
convenient to apply. In order to render the above procedure even more applicable (with
regard to symbolic calculations), consider the identity

(I#DPm)~1"I!DPm(I#DPm)~1. (21)

Introducing equation (21) into equation (6) leads to
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Thus, in general, one has
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It is noted that the above formulation introduces an iteration procedure and does not
include any calculation of the inverse of a matrix. It is convenient to determine normal
forms and the associated coe$cients from such an iterative procedure.

It is clear that the second iteration equation in equation (23) produces the normal form of
order m. According to equations (18) and (20), the normal form of order m, Fm
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(m#1)th order transformation function Pm`1 are given by
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Here am~1
s1s22sn(k)

are the coe$cients of transformed function Fm`1
m~1

(y), which has been
determined from equation (23).
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Then, the iteration procedure of equation (23) can be completed to any order k, which
starts with

F2
1
"F2#AP2!DP2Ay
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Normal forms (and the associated coe$cients) can be determined from the above
procedure, as in equation (23). It is clear that equation (23) involves a simple iteration
procedure only and it is very convenient to apply a symbolic calculation program. For
instance, a MAPLE program is designed in Appendix A, which is based on equation (23), to
determine the normal form and the associated coe$cients of two-dimensional systems.
Based on equation (23), it is very convenient to extend the program to determine the normal
form and the associated coe$cients of higher order systems.

In the above iteration procedure, in order to determine the normal form of order m,
Gm

NF
("Fm

m~1
), and the (m#1)th transformation function Pm`1, one needs to determine all

the terms of order m which satisfy the condition d!j
k
"0 in equation (18), and to

determine all the terms of order m#1 which satisfy the condition d!j
k
O0 in equation

(20). For example, consider a polynomial described by two variables, given by

g (y)"+ a
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.

One needs to determine the terms of order m and satisfy the condition d!j
k
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s
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2
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k
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k
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y
1
"suz

1
, y

2
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2
into the above polynomial, which results in

g
k
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2
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where s, u are constants.
Thus, the terms of order m which satisfy the condition s

1
(ui)#s

2
(!ui)"j

k
can be

determined as the coe$cients of smu$1. It is obtained readily by a simple procedure in the
MAPLE program.

Another MAPLE program is presented to verify and con"rm (with regard to the
conventional normal form procedure) the results obtained by the above procedure and
program. The transformation functions Ps, obtained from the above program, are
sequentially put back into the original equation (1), and the transformed functions Fm

m~1
are

determined as in equation (6), which is based on the conventional normal form procedure. If
the transformed functions Fm

m~1
consist of terms which satisfy the resonant condition

s
1
j
1
#s

2
j
2
#2#s

n
j
n
!j

s
"0, s"1, 2,2 , n,

then Fm
m~1

are normal forms. This is the basic procedure of the conventional normal form
theory. If normal forms Fm

m~1
are identical to those obtained from program 1, the results by

program 1 are veri"ed and con"rmed as the right ones, in the sense of the conventional
normal form theory.
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Next, "ve examples are presented to demonstrate the convenience of this approach and
procedure.

3. APPLICATIONS

Example 1. Determine the normal form of the two-dimensional system

xR "y,

yR "!x#ax2y.
(24)

First, transforming equation (24) into complex form by using

x"1
2
(z

1
#z

2
),
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2
i(z

1
!z

2
)
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zR"Az#F3 (z), (25)

where A"diag(i,!i); z"(z
1

z
2
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2
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1
.

According to the discussion in the previous sections, a normal form (up to order 11) of
equation (25) is in the following form:
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Transforming to polar co-ordinates leads to
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5
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2
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4
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5
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Thus, one has the normal form up to order 11 (obtained by the program in Appendix A) as
follows:
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1
z
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1
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1
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2
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1
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In polar co-ordinates, one has

rR"1
8
ar3# 13
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a3r7# 7727

18 874 368
a5r11#o (r12),

hQ "1! 11
256

a2r4! 1321
786432

a4r8#o (r12). (28)

The calculation time by PC (CPU 266) computer is very short (about 2)5 s).
Consider the transformation functions Pn (n"2, 3,2 , 11), obtained from program 1.

Introducing the transformation z"x#Pn(x) sequentially into the original equation (25)
and following the original procedure of the conventional normal form theory as in equation
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(6) produces results identical to those given in equation (27). This veri"es and con"rms the
results obtained by program 1.

In order to compare the above results with those by an averaging method, equation (25) is
considered. Introducing the scaling z"ez into equation (25) results in

zR"Az#e2F3(z), (29)

where e is a small perturbation parameter.
Substituting z"eAty into equation (29), one has

yR "e2 f 3 (y, t), (30)

in which f 3 (y, t)"e~AtF3(eAty).
Substituting transformations
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+
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Comparing the coe$cients of similarly ordered terms in equation (33) produces
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and

/
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"P ( f q`1
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For convenience, cJ
r(1)

, cJ
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,2 , cJ
r(n)

are usually chosen as zero.
Thus, the results by the above averaging method are given by
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# 13

8192
a3x4

2
x3
1
# 3319

786432
ia4x5

2
x4
1

# 2035
37 748 736

a5x6
2
x5
1
#o (r12). (35)

In polar co-ordinates, one has

rR"1
8
ar3# 13

8192
a3r7# 2035

37 748 736
a5r11#o (r12),

hQ "1! 11
256

a2r4! 3319
786432

a4r8#o (r12). (36)

It is interesting to note that the results obtained by both methods are identical (in this
example) up to order seven, and appear to be di!erent at higher orders. However, it can be
shown that the complete results (including terms of order 11) are linked together by a near
identity transformation:

x
1
"z

1
# 333

16 384
ia3z4

1
z3
2
! 181

131 072
a4z5

1
z4
2
,

x
2
"z

2
! 333

16 384
ia3z4

2
z3
1
! 181

131 072
a4z5

2
z4
1
. (37)

Introducing the transformation (37) into equation (35) leads to equation (27). One can
obtain similar conclusions in all the following examples. A detailed discussion concerning
the relationship and di!erences between the methods of normal forms and averaging is
presented in reference [10].

Example 2. Determine the normal form and the related coe$cients of the Du$ng equation,

xR "y,

yR "!x#ax3.
(38)

Transforming equation (38) into complex form yields

zR"!iz#
ia
8

(z#zN )3. (39)

Following the analysis above, normal forms of equation (39), up to order 11, can be
expressed as

zR"Az#G3
NT

(z)#G5
NT

(z)#G7
NT

(z)#G9
NT

(z)#G11
NT

(z). (40)
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Transforming equation (40) to polar co-ordinates, one has

rR"a
1
r3#a

2
r5#a

3
r7#a

4
r9#a

5
r11,

hQ "u#b
1
r2#b

2
r4#b

3
r6#b

4
r8#b

5
r10.

After simple iterations, the coe$cients of the above equation are obtained as follows:

rR"o (r12),

hQ "u!3
8
ar2! 51

256
a2r4!1419

8192
a3r6! 50 691

262 144
a4r8! 964 509

4 194 304
a5r10 . (41)

Using MAPLE the coe$cients in equation (41) are obtained in 2)5 s by PC (CPU 266)
computer. Verifying by program 2 shows that the results in equation (41) are correct. The
normal form up to order 4 agrees with those in reference [11] (The maximum order of
normal form is 4 in reference [11]), which are obtained by conventional normal form
theory.

Example 3. Determine the normal form and the related coe$cients of the following system:

xR "y,

yR "!x#ax2#bx2y.
(42)

Transforming equation (42) into complex form yields

zR"Az#F2 (z)#F3 (z), (42*)

where A"diag(i,!i); z"(z
1

z
2
)T and z

2
"zN

1
.

Applying a similar analysis as above, one can obtain the normal form of the above
equation, up to order 7, as

zR
1
"iz

1
#A

b

8
!

5ia2

12 B z2
1
z
2
#A

5a2b

72
!

11ib2

256
!

785ia4

1728 B z3
1
z2
2

#A
13b3

8192
#

6167a4b

55 296
!

4971ia2b2

20 480
!

155 525ia6

248 832 B z4
1
z3
2
,

zR
2
"!iz

2
#A

b

8
#

5ia2

12 B z2
2
z
1
#A

5a2b

72
#

11ib2

256
#

785ia4

1728 B z3
2
z2
1

#A
13b3

8192
#

6167a4b

55 296
#

4971ia2b2

20 480
#

155 525ia6

248 832 B z4
2
z3
1
. (43)

In polar co-ordinates, one has

rR"
b

8
r3#

5a2b

72
r5#A

13b3

8192
#

6167a4b

55 296 B r7#o (r9),

hQ "1!
5a2

12
r2!A

11b2

256
#

785a4

1728 B r4!A
4971a2b2

20 480
#

155 525a6

248 832 B r6#o (r8). (44)
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Using MAPLE, the coe$cients in equation (43) are obtained in 9 s by PC (CPU 266)
computer. Verifying by program 2 shows that the results (equation (43)) are correct.

In order to compare with an averaging method, one considers

xR "Ax#eF2(x)#e2F3(x) (45)

upon introducing z
1
"ex

1
, z

2
"ex

2
into (42*) (x"(x

1
x
2
)T).

Following the averaging analysis as in example 1, one has

xR
1
"ix

1
#A

b

8
!

5ia2

12 B x2
1
x
2
#A

5a2b

72
!

11ib2

256
!

785ia4

1728 B x3
1
x2
2

#A
13b3

8192
#

10 309a4b

165 888
!

39 619ia2b2

184 320
!

65 495ia6

82 944 B x4
1
x3
2
,

xR
2
"!ix

2
#A

b

8
#

5ia2

12 B x2
2
x
1
#A

5a2b

72
#

11ib2

256
#

785ia4

1728 B x3
2
x2
1
,

#A
13b3

8192
#

10 309a4b

165 888
#

39 619ia2b2

184 320
#

65 495ia6

82 944 B x4
2
x3
1
. (46)

In polar co-ordinates, one has

rR"
b

8
r3#

5a2b

72
r5#A

13b3

8192
#

10 309a4b

165 888 B r7#o (r9),

hQ "1!
5a2

12
r2!A

11b2

256
#

785a4

1728 B r4!A
39 619a2b2

184 320
#

65 495a6

82 944 B r6#o(r8). (47)

Comparing the above results with those of the normal form approach, it is found that the
results obtained by both methods are identical (in this example) up to order "ve, and appear
to be di!erent at higher orders. However, it can be shown that the complete results
(including terms of order seven) are linked together by a near identity transformation

x
1
"z

1
!

2a2(!414a2b2#243ib3!2880ia4b#1600a6)

243(9b2#100a4)
z3
1
z2
2
,

x
2
"z

2
!

2a2(!414a2b2!243ib3#2880ia4b#1600a6)

243(9b2#100a4)
z3
2
z2
1
, (48)

assuming that 9b2#100a4O0. In the case 9b2#100a4"0, one can "nd other near
identity transformations to link results (43) and (46).

It is important to note that this conclusion has been reached by introducing a scaling of
state variables (as z

1
"ex

1
, z

2
"ex

2
). However, many non-linear methods are based on the

assumption that the non-linear part of the governing equations is su$ciently small. In other
words, in the case of the system under consideration, equation (42*) may be written as

xR "Ax#eF2 (x)#eF3(x). (49)
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Applying a similar averaging technique to this system leads to

rR"
b

8
r3#

89a2b

1152
r5#A

5b3

4096
#

6209a4b

82 944 B r7#o (r9),

hQ "1!
5a2

12
r2!A

b2

32
#

785a4

1728 B r4!A
7957a2b2

36 864
#

65 495a6

82 944 B r6#o (r8). (50)

It is clear that now equations (50) and (44) are identical only up to order 3, and one can only
"nd a near identity transformation connecting equation (50) to equation (44) under the
condition 9b2#100a4O0. In the case of 9b2#100a4"0 it has been impossible to "nd
a near identity transformation linking these results.

Example 4. Determine the normal form and related coe$cients of the two-dimensional
system with six parameters, given by

xR "!y#j
1
x!j

3
x2#(2j

2
#j

5
)xy#j

6
y2,

(51)

yR "x#j
1
y#j

2
x2#(2j

3
#j

4
)xy!j

2
y2.

Transforming the above equation into a complex co-ordinate form, one has

zR"Az#F2(z), (52)

where

A"A
i

0

0

!iB , F2(x)"A
a
20

z2
1
#a

11
z
1
z
2
#a

02
z2
2

b
20

z2
1
#b

11
z
1
z
2
#b

02
z2
2
B , a

mn
"a

mn
(j

1
, j

2
, j

3
, j

4
, j

5
, j

6
).

Transforming equation (52) to polar co-ordinates, one has

rR"a
1
r3#a

2
r5#a

3
r7,

hQ "1#O( Dr D2). (53)

After simple iterations, the coe$cients of the above equation are obtained as follows:

a
1
"!1

8
j
5
(j

3
!j

6
) for j

1
"0,

a
2
" 1

48
j
2
j
4
(j

3
!j

6
) [j

4
#5(j

3
!j

6
)] for j

1
"j

5
"0,

a
3
"25

64
j
2
(j

3
!j

6
)3 (j

3
j
6
!j2

2
!2j2

6
) for j

1
"j

5
"0, j

4
"!5(j

3
!j

6
). (54)

They are identical to the results of Farr et al. [12], who employed L-S theory. However, the
results here follow a simple procedure and they are obtained in a very fast manner by using
the MAPLE program given in Appendix A. Thus, the coe$cients in equation (53) are
obtained within 2 s by PC (CPU 266) computer.
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Example 5. Determine the normal form and the related coe$cients of the system given by

xR "y,

yR "!x#bx2#cy3.
(55)

Similar to the analysis above, one can obtain the normal form of the above equation, up to
order 7, as

zR
1
"iz

1
#A

3c

8
!

5ib2

12 B z2
1
z
2
!A

785ib4

1728
#

5b2c

48
!

27ic2

256 B z3
1
z2
2

#A
567c3

8192
!

113b4c

18 432
!

155 525ib6

248 832
!

6739ic2b2

20 480 B z4
1
z3
2
,

zR
2
"!iz

2
#A

3c

8
#

5ib2

12 B z2
2
z
1
!A!

785ib4

1728
#

5b2c

48
!

27ic2

256 B z3
2
z2
1

#A
567c3

8192
!

113b4c

18 432
#

155 525ib6

248 832
#

6739ic2b2

20 480 B z4
2
z3
1
. (56)

In polar co-ordinates, one has

rR"
3c

8
r3!

5b2c

48
r5#A

567c3

8192
!

113b4c

18 432B r7,

hQ "1!
5b2

12
r2!A

27c2

256
#

785b4

1728 B r4!A
155 525b6

248 832
#

6739c2b2

20 480 B r6. (57)

Using the MAPLE program, the coe$cients in equation (57) are obtained in 9 s by PC
(CPU 266) computer. Program 2 shows that the results (equation (57)) are correct.
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APPENDIX A

writeto(out);
dorder of notmal form
m:"10:w:"1:
gx1:"s*0;gx2:"s'2*(a*u1'3);
u1:"(x1#x2)/2:u2:"I*w*(x1-x2)/2:
fx1:"gx1-1*gx2/w:fx2:"gx1#1*gx2/w:
x1:"e*z1:x2:"e'(-1)*z2:
F1[0]:"expand(e'(-1)*fx1):F2[0]:"expand(e*fx2):
FUN1:"F1[0]:FUN2:"F2[0];
for i from 1 to m do
Fm1[i-1]:"taylor(F1[i-1],s"0,m#1):Fm2[i-1]:"taylor(F2[i-1],s"0,m#1):
pb1[i]:"expand(coe!(Fm1[i-1],s,i)*s'i,e):pb2[i]:"expand(coe!(F:"2[i-1],s,i)*s'i,e):
P1[i]:"0:P2[i] :"0:
for ii from -i-2 to -1 do
P1[i]:"P1[i]#coe!(pb1[i],e,ii)*e,'ii/(ii*I*w):P2[i]:"#coe!(pb2[i],e,ii)*e'ii/(ii*I*w):
od:
for ii from 1 to i#2 do
P1[i]:"P1[i]#coe!(pb1[i],e,ii)*e'ii/(ii*I*w):P2[i]:"P2[i]#coe!(pb2[i],e,ii)*e'ii/(ii*I*w):
od:
dp11[i]:"di!(P1[i],z1):dp12[i]:"di!(P1[i],z2):
dp21[i]:"di!(P2[i],z1):dp22[i]:"di!(P2[i],z2):
F1[i]:"0:F2[i]:"0:
if i'1 then
for k from 1 to i-1 do
FF1[k,i]:"FF1[k,i-1]:FF2[k,i]:"FF2[k,i-1]:
F1[i]:"F1[i]#FF1[k,i]:F2[i]:"F2[i]#FF2[k,i]:
od:":
FF1[i,i]:"coe!(pb1[i],e,0):FF2[i,i]:"coe!(pb2[i],e,0):
F1[i]:"F1[i]#FF1[i,i]:F2[i]:"F2[i]FF2[i,i]:
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S1:"subs(Mz1"z1#P1[i],z2"z2#P2[i]N,F1[i!1]):S2:"subs(Mz1"z1#P1[i],z2"z2#P2[i]N,F2[
i-1]):
G1:"taylor(S1,s"0,m#1):G2:"taylor(S2,s"0,m#1):
for k from i#1 to m do
FG1[k,i]:"coe!(G1,s,k)*s'(k):FG2[k,i]:"coe!(G2,s,k)*s'(k):
FF1[k,i]:"FG1[k,i]-dp11[i]*FF1[k-i,i]-dp12[i]*FF2[k-i,i]:
FF2[k,i]:"FG2[k,i]!dp21[i]*FF1[k-i,i]-dp22[i]*FF2[k-i,i]:
F1[i]:"F1[i]#FF1[k,i]:F2[i]:"F2[i]#FF2[k,i]:
od:
print(NF1"',FF1[i,i]);
dprint(NF2"',FF2[i,i]);dprint('P1',P1[i]);dprint('P2',P2[i]);
od:
PP1:"0; PP2:"0:
for i from 1 to m do
PP1:"PP1#P1[i]: PP2:"PP#P2[i]:
od:
save PP1, PP2, FUN1, FUN2, 'nfp':
quit:

APPENDIX B

readlib(mtaylor):
with(linalg):writeto(out):
read nfp:
m:"8;e:"1:w:"1:
aa1[0]:"FUN1:aa2[0]:"FUN2:
for i from 1 to m do
P1[i]:"coe!(PP1,s,i)*s'i:P2[i]:"coe!(PP2,s,i)*s'i:
dp11:"di!(z1#P1[i],z1):dp12:"di!(z1#P1[i],z2):
dp21:"di!(z2#P2[i],z1):dp22:"di!(z2#P2[i],z2):
AP:"array([[dp11,dp12),[dp21,dp22]])):APF:"inverse(AP):
sa11[i]:"mtaylor(APF[1,1],s"0,m#1):sa12[i]:"mtaylor(APF[1,2],s"0,m#1):
sa21[i]:"mtaylor(APF[2,1],s"0,m#1):sa22[i]:"mtaylor(APF[2,2],s"0,m#1):
AA1[i]:"subs(Mz1"z1#P1[i],z2"z2#P2[i]N,aa1[i-1);
AA2[i]:"subs(Mz1"z1#P1[i],z2"z2#P2[i]N,aa2[i-1]);
Aa1:"mtaylor(AA1[i],s"0,m#1);Aa2:"mtaylor(AA2[i],s"0,m#1);
TT1:"mtaylor(sa11[i]*Aa1#sa12[i]*Aa2,s"0,m#1):
TT2:"mtaylor(sa21[i]*Aa1#sa22[i]*Aa2,s"0,m#1):
aa1[i]:"simplify(TT1):aa2[i]:"simplify(TT2);
dprint('aa[i]',aa1[i]);
od:tete:"aa1[m];quit;


	1. INTRODUCTION
	2. THE MODIFIED NORMAL FORM APPROACH AND PROCEDURE
	3. APPLICATIONS
	ACKNOWLEDGMENTS
	REFERENCES
	APPENDIX A
	APPENDIX B

